Mutual Exclusivity, Venn Diagrams and Probability

Level 1 – 2

1.	For a class of 20 students, the Venn diagram on the right shows how many students play (<i>F</i>)ootball and (<i>B</i>)asketball.		
	For the following expressions:		$\left(\begin{array}{cc}8\\4\end{array}\right) 3$
	i) explain the meaningii) calculate the value		
	a) $n(F \cap B)$	i)	
		ii)	
	b) <i>n</i> (<i>F</i> ')	i)	
		ii)	
	c) $P(F \cup B)$	i)	
		ii)	
	d) Calculate the probabilit	ty that a randomly selected person play	ys only one sport.
	e) Calculate the probabilit	y that a randomly selected person doe	s not play either sport.
	f) Calculate the probabilit	y that a randomly selected person doe	s not play both sports.
	g) Calculate the probabilit	y that a randomly chosen football play	yer plays only football.

- 2. Determine whether the following pairs of events are mutually exclusive. If they are not mutually exclusive give a reason.
 - a) A regular 6 sided die is rolled. Events A and B are:
 - A: A composite number is rolled
 - B: An odd number is rolled
 -
 - b) A card is randomly chosen from a standard 52-card deck. Events A and B are:
 - A: A red card is chosen
 - B: A spade is chosen
 -
 - c) Two coins are flipped. Events A and B are:
 - A: There is at least one tail
 - *B*: There are no heads
 -
 - d) In a lottery a number *X* is randomly chosen from the numbers 1 to 49. Events *A* and *B* are:
 - *A*: X > 23
 - *B*: $X \le 23$

.....

e) A DP student is randomly chosen. Events A and B are:

- A: The student studies mathematics HL
- B: The student studies mathematics SL

.....

- 3. In a class of 40 DP students everyone studies (*P*)hysics, (*C*)hemistry or both. The number of students who study physics is 28 and the number of students who study chemistry is 25.
 - a) Use the Venn diagram to complete the equations on the right.

b) Solve the equations to find the value of *x*, *y* and *z*.

..... c) Calculate the probability that a randomly selected student studies physics. d) Calculate the probability that a randomly selected student studies physics, given that he/she

studies chemistry.

4. In a class of 30 students, all students study Mathematics or Physics. If 28 students study Mathematics and 15 students study Physics, with the help of a diagram find the number of students who:

Draw your diagram in this box

- 5. In a group of people, the probability that a person has visited London (*L*) is $\frac{7}{12}$. The probability that a person has visited Paris (*P*) is $\frac{4}{12}$. The probability that a person has visited both London and Paris is $\frac{1}{12}$.
 - a) Use this information to complete the following Venn diagram:

- b) Calculate the probability a randomly selected person has visited:
- i) Only Paris
- ii) London but not Paris
- iii) Neither London nor Paris
- c) If these probabilities were calculated by surveying 120 people, how many people would you expect to have visited both cities?

.....

6. In a group of students the probability of choosing one who studies French is $\frac{1}{2}$. The probability of choosing one who studies Spanish is $\frac{2}{3}$. Are the two events disjoint? Explain your answer.

7. Given that P(A) = 0.3, P(B) = 0.5 and $P((A \cup B)') = 0.2$ determine whether events A and B are mutually exclusive.

Level 5 – 6

- 8. In a class of 20 students everyone speaks English and some students speak other languages.
 - 7 students speak French
 - 10 students speak Spanish
 - 9 students speak German
 - 1 student speaks all three of these languages
 - 3 students speak neither of these languages
 - 2 students speak only German
 - 3 students speak only French
 - 4 students speak only Spanish

a) Complete the Venn diagram, showing how many students belong to each region.

b) A student is selected at random, calculate the probability of choosing a student who speaks:

- i) only Spanish and French
- ii) exactly two of the languages
- iii) at least one of the languages
- 9. Sets *A*, *B* and *C* are defined as follows:
 - $A = \{ \text{multiples of } 2 \}$ $B = \{ \text{prime numbers} \}$
 - $C = \{$ numbers less than 6 $\}$
 - a) Place the following numbers in the correct place on the Venn diagram:

2	3	6	7	9	10
11	13	15	19	20	21

b) A number is selected at random. Calculate the probability that the number belongs to the following sets:

i) $C \cap A$	
ii) $A \cup B'$	
iii) $A \cup B \cup C$	
iv) $A \cup (B \cap C)$	

10. Create a Venn diagram showing the relationship between squares (*S*), quadrilaterals (*Q*), rectangles (*R*) and parallelograms (*P*).

Draw your diagram in this box

11. In each separate Venn diagram, shade the region indicated:

12. Let $P(A' \cap B) = 0.2$, P(B) = 0.5 and P(A) = 0.4

a) Determine whether events A and B are mutually exclusive

b) Hence determine the value of $P(A \cap B)$.

Level 7-8

- 13. A group of 40 students were surveyed to find which food they liked from a choice of chicken (*C*), fish (*F*) and lamb (*L*).
 - 15 students like chicken
 - 20 students like fish
 - 8 students like fish and lamb, but not chicken
 - 2 students do not like any of these foods
 - 3 students like all three
 - 9 students like chicken and fish
 - 26 students like lamb
 - a) Represent this information on the following Venn diagram

b) How many student	ts liked only chicken?		
c) How many student	s liked only lamb?		
d) How many student	s liked chicken and lamb but no	t fish?	
e) A student is chosen	n at random. Calculate the follow	ving:	
i) $P(C \cap F)$		ii) $P(L \cup C)$	
iii) $P(C \cap F \cap L)$		iv) $P(F \cap C')$	
v) $P(C \cup F \cup L)'$		vi) $P[(F \cap L) \cup C$	2]

- 14. Let *U* represent the pets in a pet shop. Some (*D*)ogs are (*B*)rown. Some (*C*)ats are brown. No (*R*)abbits are brown.
 - a) Represent the sets D, B, C and R in a Venn diagram.

______U

b) Add the following pet IDs to your diagram (do not add any more regions to your diagram):

ID	Name	Туре	Colour
1	Felix	Cat	White
2	Garfield	Cat	Brown
3	Snoopy	Dog	Brown
4	Richard	Hamster	White
5	Scooby	Dog	Black
6	Peter	Rabbit	Gray
7	Tom	Cat	White
8	Pluto	Dog	Black
9	Roger	Rabbit	Gray
10	Jerry	Mouse	Brown

c) Calculate the probability a randomly chosen pet form the list above belongs to the following sets:

i) $D \cup (B \cap C)'$	
ii) $R \cup B$	
iii) <i>B</i> '∪ <i>R</i> '	

d) Write, using mathematical notation, the sets which contain *only* the following animals:

i) Jerry, Tom and Felixii) Snoopy and Richard

15. In each separate Venn diagram, shade the region indicated:

