Transforming Functions

Level 1 – 2

1. If $f(x) = x^2$ complete the following tables and plot the graphs. Don't forget to label each graph.

у	=f(x)	y = .	y = f(x/2)			f(2x)
х	у	x	у		x	у
-2		-4			-1	
-1		-2			-0.5	
0		0			0	
1		2			0.5	
2		4			1	

2. If $f(x) = x^2 + 2x + 1$ complete the following tables and plot the graphs. Don't forget to label each graph.

у	=f(x)	y = 3	f(x/2)	<i>y</i> =	f(2x)
х	у	х	у	х	у
-3		-6		-1.5	
-2		-4		-1	
-1		-2		-0.5	
0		0		0	
1		2		0.5	

3. If $f(x) = x^2$ complete the following tables and plot the graphs. Don't forget to label each graph.

у	=f(x)	y =	y = 2f(x)			$=\frac{1}{2}f(x)$
х	у	x	у		х	у
-2		-2			-2	
-1		-1			-1	
0		0			0	
1		1			1	
2		2			2	

4. If $f(x) = x^2 - 3$ complete the following tables and plot the graphs. Don't forget to label each graph.

у	=f(x)	<i>y</i> =	=2f(x)	y =	$=\frac{1}{2}f(x)$
х	у	x	у	х	у
-2		-2		-2	
-1		-1		-1	
0		0		0	
1		1		1	
2		2		2	

5. If $f(x) = x^2 + 4x + 4$ complete the following tables and plot the graphs. Don't forget to label each graph.

у	=f(x)	<i>y</i> =	= f(-x)
х	у	х	у
-4		0	
-3		1	
-2		2	
-1		3	
0		4	

6. If $f(x) = x^2 - 3$ complete the following tables and plot the graphs. Don't forget to label each graph.

у	=f(x)	y = -f(x)				
х	у	х	у			
-2		-2				
-1		-1				
0		0				
1		1				
2		2				

7.	Complete the following sentences using the words <i>stretched</i> or <i>reflected</i> , along with a direction. Be careful when describing the direction of a stretch. <i>Sometimes</i> a stretch in one direction looks the same as a compression in the perpendicular direction.
	a) The graph of $y = f(x/c)$, where $c > 0$, is the graph of $y = f(x)$
	b) The graph of $y = df(x)$, where $d > 0$, is the graph of $y = f(x)$
	c) The graph of $y = f(-x)$ is the graph of $y = f(x)$
	d) The graph of $y = -f(x)$ is the graph of $y = f(x)$
8.	Complete the following sentences. Use the absolute value function when describing the scale of the stretch.
	The absolute value of x is $ x = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
	a) The graph of $y = f(x/c)$, where $c < 0$, is the graph of $y = f(x)$
	b) The graph of $y = df(x)$, where $d < 0$, is the graph of $y = f(x)$

9.	The parabola $y = x^2$ is translated 2 units to the right, followed by 4 units upwards, followed by a reflection in the <i>x</i> -axis. Find the equation of the new parabola in expanded form.
10.	The parabola $y = x^2 - 2x + 1$ is translated 3 units to the left, followed by 1 unit upwards, followed by a horizontal stretch by a factor of 2. Find the equation of the new parabola in expanded form.
11.	The parabola $y = x^2 + 4x - 1$ is translated 1 unit to the left, followed by 2 units downwards, followed by a vertical stretch by a factor of 3. Find the equation of the new parabola in expanded form.
12.	An even function is a function which satisfies $f(x) = f(-x)$ for all x . An odd function satisfies $f(-x) = -f(x)$ for all x . What kind of symmetry does
	a) an even function have?
	b) an odd function have?
	Hint: Plot some even and odd functions on your calculator.
13.	If an odd function is reflected in the <i>x</i> -axis and then reflected in the <i>y</i> -axis, what can you say about the resulting function? Justify your answer.

14. Determine how the graph of $y = 2x^2 - 4x + 1$ compares to the graph of $y = x^2$. Your transformations must be in a correct order. 15. Determine how the graph of $y = 2x^2 + 2x - 6$ compares to the graph of $y = x^2 + 4x - 1$. Your transformations must be in a correct order. 16. Describe a series of transformations, in a correct order, which maps y = f(x) to y = g(x). Hence, write g(x) in terms of f(x). a) 6 y = g(x)y = f(x)-2 2 -1 3 -3

b)	
y = f(x)	
-3 -2 1 0 1 2 3	
y = g(x)	
-3	
4	
use a reflection in your answer.	
18. a) Determine how the graph of $y = x^2 + 4x - 3$ comparant not use a reflection in your answer.	These to the graph of $y = x^2 - 2x + 4$. You must