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Introduction
Countries nowadays focus on clean energy alternatives to fossil fuel, to combat the climate changes caused 
by global warming. Solar panels are used to convert thermal radiation into electrical energy, and are seen as a
promising source of clean energy. To capture as much sunlight as possible, solar panels are installed on many
households. In a large solar panel plant with thousands of solar panels, there could exist a system to point all 
the solar panels to the sun, to maximize the energy produced. However, for most households, solar panels are
fixed permanently to the roof. This paper will investigate the optimum tilt on a rooftop solar panel, so it can 
obtain the maximum amount of energy throughout one year. 

Aim
The aim of this investigation is to determine the optimum tilt angle of a solar panel depending on the position
on Earth, i.e, depending on the latitude. The solar panel will be tilted in one direction only throughout the 
investigation. In Part 1, we will assume that Earth is a spherical object traveling around the sun with no axial 
tilt. In Part 2, we will expand the problem and add the axial tilt on Earth, which makes this investigation 
more realistic. Throughout the investigation, it is assumed that nothing is present between the solar panel and
the sun at all times, and one day is 24 hours.

Rationale
I chose to investigate this topic because of its realistic applications and its complexity. This investigation will
produce a solution to a real world problem, which interested me. Knowing the optimum angle for a rooftop 
solar panel to maximize energy is relevant information for anyone installing solar panels. Simultaneously, I 
was amazed by the complexity of this investigation. Although the purpose of this investigation is to 
determine the tilt of a solar panel, a simple sounding problem, it is necessary to consider the movement of 
earth around the sun throughout one year, which involved complex mathematics involving vectors, 
trigonometry, and calculus.

Part 1: Optimum tilt angle for a spherical Earth with no axial tilt

Description of the situation
To begin the investigation, we will consider the simplest case where the Earth is a spherical object with no 
axial tilt, whereas in reality, the axial tilt of Earth is 23.5°. An axial tilt of a planet is the angle between its 
rotational axis and the perpendicular to its orbital plane(Nave).

Fig. 1
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Figure 1 illustrates this scenario. The center of Earth will be located on the origin of 3D xyz coordinate 
system. The center of the sun is located on the negative region of the x-axis. However, distance between the 
Earth and Sun is not to scale on this diagram. Since we have set the axial tilt of Earth to 0° for Part 1, the 
rotational axis of the Earth is equivalent to the y-axis. 

When considering the position of an arbitrary point on Earth throughout one day, the day begins at midnight 
when the point is furthest away from the Sun. As time passes, the Earth will rotate clockwise when viewed 
directly above the axis of rotation. Throughout the investigation, we will consider the amount of time passed 
as the angular displacement of a point, denoted by θt. For example, in figure 1, point A is at the furthest it can
be from the sun, hence it is the initial position for a day(which is midnight). At this point, the angular 
displacement is 0. After 6 hours, a quarter of a day has past, thus the Earth has rotated 90 degrees. Now, 

point A has moved to the position of point B, where its angular displacement is 
π
2

, shown by the diagram

on the right in figure 1. 

The aim of this investigation is to calculate the optimum tilt angle of a solar panel which produces the 
maximum amount of energy throughout one year. For Part 1, since the axial tilt is 0, the amount of light any 
arbitrary point receives in 24 hours will be constant for any day in a year. Therefore, we will only consider 
the optimum angle for one day, i.e, one full rotation of Earth. 

Another concept to define is the direction at which the solar panel will be tilted. For an arbitrary point on a 
spherical Earth, a plane tangent to that point can be created. Placing the solar panel on this plane is 
equivalent to placing the solar panel flat on the ground in real life. The axis of tilting the solar panel will be 
the component of this plane perpendicular to the Earth’s axis of rotation.

Fig. 2

Figure 2 views the Earth directly above the xy-plane, exactly at midnight. The diagram shows how the solar 
panel, drawn in light blue, will be tilted by an angle θ to the tangent plane. 
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Method to determine the amount of sunlight the solar panel receives
The amount of energy the solar panel will produce, will depend on the amount of sunlight it receives. 
Therefore, in the investigation we will calculate the optimum angle where the solar panel can collect the 
maximum amount of sunlight. To calculate the amount of sunlight the solar panel will receive at any instant, 
we must represent the Sun’s rays as vectors. We will assume the magnitude and direction of all the Sun’s rays
to be constant, which is a reasonable assumption. For convenience, we will set the magnitude of the Sun’s 
rays to be 1 unit. When the Sun’s ray will hit the solar panel, the sunlight the solar panel will receive is the 
component of the Sun’s ray which is perpendicular to the solar panel’s surface.

Fig. 3

Figure 3 illustrates this situation. Vector S is the Sun’s rays, vector N is the normal vector to the solar panel, 
and vector Spanel is the vector component perpendicular to the solar panel. The amount of light the solar panel 
will receive is the magnitude of vector Spanel. From the figure 3, we can deduce, 

cos(θ ray)=
| ⃗S panel|
|⃗S|

⇔| ⃗S panel|=|⃗S|cos(θ ray)

Since |⃗S|=1 | ⃗S panel|=|⃗S||cos(θ ray)|=cos(θ ray)

cos(θ ray)≥0 since , θ ray∈[0 ,
π
2
]

To calculate cos(θray), we can take the dot product of the vector N and vector S.

if N⃗=(x N

yN

zN
) and S⃗=( xS

yS

z s
)

N⃗⋅S⃗=xN xS+ yN yS+ zN zS=|N⃗||⃗S|cos(θ ray)

cos(θ ray)=
x N xS+ y N yS+ z N zS

|N⃗||⃗S|
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One aspect to keep in mind is the direction of vector S, which is pointing towards the solar panel. However, 
to calculate the correct value of θray, we must take the dot product of vector N and vector S pointing to the 
opposite direction. This concept is shown in figure 4.

Fig. 4

Therefore, the correct calculation for cos(θray) will be, 

N⃗⋅(−S⃗ )=−( x N xS+ y N yS+ z N zS)=|N⃗||⃗S|cos(θ ray)

As |⃗S|=1

cos(θ ray)=−(
xN xS+ yN yS+ z N zS

|N⃗|
)

Determine the amount of sunlight the solar panel will receive
To calculate the amount of sunlight received, given by cos(θray), we must determine the normal vector of the 
solar panel. To do so, first we must determine a general equation for a position vector for any point on Earth.

Fig. 5
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Figure 5 illustrates the components which make up the position vector P. The aim is to determine the xyz 
components of the position vector in terms of the θl, the latitude, and θt, the angular displacement. We can 
use two 2D diagrams to calculate each component vector.

Fig. 6

We can use the diagrams in figure 6 to calculate the component vectors. In diagram 1, we are viewing 
directly above the plane that contains vector Py and P2. In diagram 2, we are viewing directly above the xz-
plane. Vector P2 is contained in the xz-plane, and is the sum of vector Px and Pz.

Let the radius of Earth=r=|P⃗|
P⃗2=rcos (θ l) P⃗ y=rsin(θ l)

P⃗ x= P⃗ 2cos (θ t)=rcos(θ l )cos(θ t) P⃗ z= P⃗2 sin(θ t)=rcos (θ l) sin(θ t )

Thus, P⃗=(rcos(θ l) cos(θ t)
rsin(θ l)

rcos (θ l) sin(θ t)
)

Fig. 7
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Figure 7 is a view directly above the plane which contains the position vector P and its component vector Py. 
The red vector N is the normal vector to the solar panel. If we set the magnitude of the normal vector to r, the
radius of Earth, and translate it to the origin, we end up with this diagram. From the diagram, we can deduce 
the angle between vector N and the horizontal is θl – θ. Knowing this, we can express the normal vector in 
the same way as the position vector, but with latitude θl – θ.

Therefore, the normal vector N of the solar panel tilted by an angle θ, for a point on Earth with latitude θl, 
and angular displacement θt is,

N⃗=(rcos(θ l−θ )cos(θ t )
rsin(θ l−θ )

rcos (θ l−θ )sin (θ t)
)

To determine cos(θray), we need to know the components of vector S, that represents the Sun’s rays.
Recall that the center of the Sun is located on the negative side of the x-axis, and vector S has a magnitude of
1 unit. Since the center of the Earth is also located on the x-axis(the origin), vector S must be,

S⃗=(100)
Therefore, cos(θ ray)=−(

xN xS+ yN yS+ z N zS

|N⃗|
)=−(

rcos(θ l−θ )cos(θ t )
r

)=−cos(θ l−θ)cos(θ t)

Determine a function to calculate the total amount of sunlight
We have found an expression for the amount of light received for a specific angular displacement value. 
Thus we can express and amount of light received as, 

f (θ t )=−cos(θ l−θ )cos(θ t)

The total amount of sunlight the solar panel receives in a day can be determined using the limit definition of 
the integral. To do this, we must first determine the interval when the solar panel receives sunlight 
throughout a day, in terms of θt. This interval should be between sunrise and sunset. Since the axial tilt of 

Earth is 0, 6AM is sunrise and 6PM is sunset. In terms of θt, θ t=
π
2

is sunrise and θ t=
3 π
2

is sunset.

The amount of sunlight received over a period of time is determined by the amount of sunlight multiplied 
with the time interval. Since we are using the angular displacement to represent time, the amount of sunlight 
received for a small amount of time is,  f (θt) Δθt, where Δθt corresponds to the small amount of time. If we 

add all the values of f (θt)Δθt, from θ t=
π
2

to θ t=
3 π
2

, we can approximate the total amount of 

sunlight received; given by,

f ( π
2
) Δθ t+ f ( π

2
+ Δθ t )Δθ t+ f (π

2
+2 Δθ t )Δθ t+ ...+ f (3 π

2
) Δθ t=∑

i=0

n

f ( π
2
+ Δθ t i)Δθ t

In this expression, Δθt is the time interval(sunrise to sunset) divided into n intervals.
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Thus, Δθ t=

3π
2

−π
2

n

Substituting this back into the original expression, we get,

Total amount of sunlight≈∑
i=0

n

f ( π
2
+

3 π
2

− π
2

n
i)( 3 π

2
−π
2

n )
If we take the limit as n goes to infinity, we can determine the exact value of the total amount of sunlight

Total amount of sunlight= lim
n→∞

∑
i=0

n

f ( π
2
+

3 π
2

− π
2

n
i)( 3 π

2
−π
2

n )
We can compare sections of this infinite sum with the limit definition of the integral, so we can represent the 
total amount of sunlight received in a day through and integral, rather than an infinite sum.

 

∫
a

b

f ( x)dx= lim
n→ ∞

∑
i=0

n

f (x i)
b−a

n

where xi = a + Δx　Δx = 
b−a

n
　a = initial value of x　b = final value of x

By comparing the two equations and the terms inside them, we can represent the function as such,

Total amount of sunlight= f (θ )=∫
π
2

3π
2

f (θ t )dθ t=∫
π
2

3π
2

−cos(θ l−θ )cos(θ t)dθ t

This function given by this integral calculates the total amount of sunlight as a function of the tilt angle θ.

Determine the optimum tilt angle
To determine the optimum tilt angle, we must differentiate f ( θ ) and determine the angle for the local 
maximum point. To do so, we must first simplify the integral in the function.

f (θ )=∫
π
2

3π
2

−cos(θ l−θ)cos(θ t)dθ t=−cos(θ l−θ )∫
π
2

3π
2

cos(θ t)dθt

=−cos(θ l−θ )[ sin(θ t )]π
2

3π
2 =−cos(θ l−θ )(sin( 3π

2
)−sin( π

2
))

=−cos(θ l−θ )(−1−1)=2cos(θ l−θ )
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We can determine the maximum point by solving f ' (θ )=0

f ' (θ )=−2 sin (θ l−θ )(−1)=2sin (θ l−θ )

f ' (θ )=0 ⇔ 2sin (θ l−θ )=0 ⇔ sin(θ l−θ )=0

θ l−θ=kπ ⇔ θ=θ l+kπ k∈ℤ

Since θ∈[0 ,
π
2
] , θ = θl

Therefore, the maximum amount of energy can be obtained when the tile angle is equal to the latitude. This 
result makes sense because the solar panel will face the sun directly when the tilt angle is equal to the 
latitude, shown in figure 8. 

Fig. 8

Part 2: Optimum tilt angle for a spherical Earth with an axial tilt

Description of the situation
In this section, we will take the same approach as Part 1 to determine the optimum angle for a spherical Earth
with an axial tilt of 23.5°. 

Fig. 9
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Figure 9 illustrates the scenario for Part 1 with the addition of Plane Π, which is a plane containing the 
equator of Earth(Plane Π is shown only to visualize the difference between figure 9 and 10).

Fig. 10

Figure 10 views the Sun and the Earth from the same direction as figure 9, but the Earth has rotated 23.5° on 
the z-axis. This rotation causes the rotational axis of the Earth to deviate from the y-axis. 

The method to calculate the optimum tilt will be the same as Part 1 of this investigation. First, a general 
expression for the normal vector of the solar panel will be determined. Then, we will take the dot product of 
the normal vector and the vector to represent the Sun’s ray. Finally, we will use integration to create a 
function of θ, the tilt angle, and determine the optimum tilt angle. Also, we will keep axis at which the solar 
panel is tilted, and the system of using angular displacement to represent time the same as Part 1.

However, unlike Part 1, due to the axial tilt, the optimum angle will differ depending on the day in an year. A
method to comprehend to this change will be discussed later in this investigation.

Determine the amount of sunlight the solar panel will receive
To determine the general expression for the normal vector, we will begin with the general expression for the 
normal vector when the axial tilt was 0. From Part 1, we know this expression is, 

N⃗=(rcos(θ l−θ )cos(θ t )
rsin(θ l−θ )

rcos (θ l−θ )sin (θ t)
)

Recall the method in which the normal vector was calculated in Part 1. If the normal vector is translated to 
the origin, it is equivalent to a position vector created from latitude θl – θ, and angular displacement θt. The 
point on the surface of the sphere, created by the translated normal vector, will have coordinates, 

( x , y , z)=( rcos (θ l−θ )cos(θ t) , rsin(θ l−θ ) , rcos(θ l−θ ) sin(θ ) )
Let this point be point N.
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Shown by figure 9 and 10, when the axial tilt on the Earth is applied, the whole sphere is rotated by an angle 
θr, about the z-axis. This means, all the points on the sphere will have rotated about the z-axis as well. 
Therefore, point N must be rotated about the z-axis by θr radians. 
Since we are rotating the point about the z-axis, the z-coordinate will remain constant. Thus, this problem is 
equivalent to rotating a point with two x,y coordinates about the origin, when viewed directly above the 
xy-plane.

Fig. 11

Figure 11 illustrates the situation. In this case, point P1 has has coordinates, 

P1(x , y)=( rcos (θ l−θ) cos(θ t) , rsin(θ l−θ) )

And the aim is to determine the coordinate of point P2. To do so, we can use the rotation matrix. The rotation 
matrix is a tool to determine the coordinate of a point when it is rotated counterclockwise about the origin in 
a cartesian plane(Weisstein). The coordinate of a point after the rotation is calculated by multiplying the 
rotation matrix and the coordinates expressed in a 2×1 matrix(Weisstein).

Rotation matrix: [cos(θ )
sin (θ)

−sin(θ )
cos(θ ) ]

Coordinates of P 2=[cos(θ r)
sin(θ r)

−sin(θ r)
cos(θ r) ][ x

y ]=[ xcos(θ r)− ysin(θ r)
xsin(θ r)+ ycos(θ r) ]

=[rcos (θ l−θ )cos(θ t)cos (θ r)−rsin(θ l−θ ) sin(θ r)
rcos(θl−θ)cos (θ t) sin(θ r)+rsin(θ l−θ )cos(θ r) ]

The coordinates of point P2 is the x and y coordinates of point N after it has been rotated by θr radians about 
the z-axis. Therefore, the new point N denoted as Nnew will be,

N new (x
y
z )=(rcos (θ l−θ )cos(θ t)cos(θ r)−rsin(θ l−θ) sin (θ r)

rcos(θ l−θ )cos(θ t ) sin(θ r)+rsin(θ l−θ )cos(θ r)
rcos (θ l−θ ) sin(θ t)

)
12



Recall that point N before the rotation is point created on the surface of the sphere by the normal vector of 
the solar panel. Therefore, point Nnew is the normal vector to the solar panel tilted θ radians, which is located 
on a point on Earth with latitude θl, angular displacement θt, and an axial tilt of θr radians. 
Now that we know a general expression for the normal vector, we can use the formula derived in Part 1 to 
calculate the amount of sunlight received at one instance, given by,

Amount of sunlight=cos(θ ray)=−(
x N xS+ y N yS+ zN zS

|N⃗|
)

where, N⃗=(rcos(θ l−θ )cos(θ t )cos(θ r)−rsin(θ l−θ ) sin(θ r)
rcos (θ l−θ )cos(θ t) sin(θ r)+rsin(θ l−θ)cos(θ r)

rcos(θl−θ) sin(θ t)
) and S⃗=(100)

Therefore, Amount of sunlight=−(
rcos(θ l−θ)cos(θ t)cos(θ r)−rsin(θ l−θ) sin(θ r)

r
)

=sin(θ l−θ) sin(θ r)−cos(θ l−θ )cos(θ t )cos(θ r)

Since this is a function of angular displacement, θt, 

f (θ t )=sin(θ l−θ) sin(θ r)−cos(θ l−θ )cos(θ t )cos(θ r)

Represent the movement of Earth around the Sun
In reality, the Earth will orbit around the Sun. However, throughout the investigation, the position of Earth 
has been fixed to the origin. Also, considering the orbit of a rotating body makes this problem too 
complicated and difficult to imagine. To simplify the problem, we can focus on the apparent change on the 
axial tilt of Earth.

Fig. 12 

Figure 12 illustrates how the Earth travels around the Sun. If we view the Earth from the sun, at point A, the 
apparent axial tilt of Earth is 23.5°. Similarly, at point C, the apparent axial tilt of is -23.5°. This means, at 
some point, the apparent axial tilt was equal to 0. The two points at which this will happen is point B and D. 
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Fig. 13

Figure 13 shows why the apparent axial tilt of the Earth is 0° at points B and D. For both points, the axis of 
rotation of the Earth appears to be rotated about the x-axis by 23.5°. Although this might not be obvious, if 
we rotate both the Earth and the Sun 23.5° about the x-axis, we return to the scenario examined in Part 1, 
where the axial tilt = 0. Rotating both celestial bodies about the x-axis only changes the viewer’s perspective.
The relationship between the Earth and the Sun will be unchanged.

Fig. 14

Figure 14 illustrates the apparent change in the axial tilt of Earth throughout the year. If we assume the Earth 
orbits around the sun in a circular path, we can express the apparent axial tilt of Earth as a function of a 
specific day of a year.

θ r=
23.5
180

π cos( 2 π
365

n) n∈ℤ , n∈[1 ,365]

Here, n represents the number of days in a year. In this formula, we are assuming the apparent axial tilt will 
stay constant for a day. While this is not true, because the change in axial tilt for one day is very small, it is a 
reasonable assumption to simplify the investigation.
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Determine a function to calculate the total amount of sunlight 
Now, we know the amount of light the solar panel tilted by an angle θ,  will receive at an instant depending 
the position of Earth, given by θl, θt, and a specific day of the year given by n.
The total amount of sunlight the solar panel will receive in a particular day can be determined the same way 
as explained in Part 1, using integration. 

From Part 1 we know that,

Total amount of sunlight for one day= ∫
Sunrise

Sunset

f (θ t )dθ t

= ∫
Sunrise

Sunset

sin(θ l−θ) sin (θ r)−cos(θ l−θ )cos(θt )cos(θ r)dθ t

= ∫
Sunrise

Sunset

sin(θ l−θ) sin (23.5
180

π cos( 2 π
365

n))−cos(θ l−θ )cos(θ t)cos( 23.5
180

π cos( 2π
365

n))dθ t

The lower and upper bounds for the integral is the angular displacement value which represent the time of 
sunrise and sunset, respectively. 

To calculate the total amount of sunlight received for a year, we have to add this function 365 times for every
value of n from 1 to 365. Therefore, 

f (θ )=∑
n=1

365

∫
θ sunrise

θ sunset

sin(θ l−θ) sin (23.5
180

π cos( 2 π
365

n))−cos(θ l−θ )cos(θ t)cos( 23.5
180

π cos( 2π
365

n))dθ t

The final step to complete this function is to determine an expression for the θsunrise and θsunset.

Fig. 15

Regardless of the apparent axial tilt, the borderline between day and night is constant throughout the year on 
this diagram, and is visualized in figure 15. Since both the centers of the Sun and the Earth are fixed on the 
x-axis, this borderline is always represented by the yz-plane given by the equation x = 0. In other words, the 
angular displacement between midnight and sunrise can determined, by solving the equation, 

x component of ⃗N new=0 for θt

15



rcos(θ l−θ )cos(θ t )cos(θ r)−rsin(θ l−θ ) sin(θ r)=0

cos(θ l−θ )cos(θ t)cos(θ r)=sin(θ l−θ ) sin(θ r)

cos(θ t)=
sin(θ l−θ ) sin(θ r)
cos(θ l−θ )cos(θ r)

cos(θ t)=tan(θ l−θ ) tan(θ r)

θ t=cos−1(tan (θ l−θ ) tan(θ r))=cos−1(tan (θ l−θ ) tan(23.5
180

π cos( 2π
365

n)))

This is the angle between midnight and sunrise, 

Thus,  θ sunrise=cos−1( tan(θ l−θ) tan (23.5
180

π cos( 2 π
365

n)))

Since the time it takes from midnight to sunrise is the same as sunset to midnight,  

θ sunset=2π−cos−1(tan(θ l−θ ) tan( 23.5
180

π cos( 2π
365

n)))

Therefore, the total amount of sunlight received throughout a year is given by the function,

f (θ )=∑
n=1

365

∫
cos−1(tan(θl−θ)tan (θ r))

2π−cos−1(tan(θ l−θ)tan(θ r))

sin(θ l−θ) sin (θ r)−cos(θ l−θ )cos(θt )cos(θ r)dθ t

where θ r=
23.5
180

π cos( 2 π
365

n)

(θr is used to tidy the function)

Determine the optimum tilt angle
Before we can determine the optimum tilt angle, we can simplify the function by simplifying the integral.

f (θ )=∑
n=1

365

∫
a

b

sin(θ l−θ ) sin(θ r)−cos(θ l−θ )cos(θ t)cos(θ r)dθt

f (θ )=∑
n=1

365

[ sin(θ l−θ ) sin(θ r)θ t−cos(θl−θ)cos (θ r) sin (θ t)]a
b

f (θ )=∑
n=1

365

sin (θ l−θ )sin (θ r)(b−a)−cos(θ l−θ )cos(θ r)(sin(a)−sin (b))

where, a=cos−1( tan(θ l−θ ) tan(θ r)) , b=2π−cos−1(tan(θl−θ) tan(θ r))

and θ r=
23.5
180

π cos( 2π
365

n)

Since differentiating this function and calculating the maximum is impossible by hand, I created a computer 

program written in javascript(see appendix) which will graph this function for the domain, θ∈[0 ,
π
2
] , 
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and calculate the value of θ which produces the maximum amount of sunlight the solar panel will receive in 
a year. 

Fig. 16

This is the graph which shows the total amount of light received by the solar panel depending on the tilt 
angle. Osaka, Japan, has a latitude of approximately 34.5 degrees. According to this graph, the maximum 
amount of energy can be produced if the solar panel is tilted 30.87 degrees. This optimum tilt angle is 
calculated in the program by taking 1000 points within the domain of the function and compares which value
or θ produces the largest value. 

When creating the program, one aspect which had to be considered was the upper and lower bounds of the 
integral, θsunrise and θsunset, which was originally part of the function. The element which exists in both of the 
bounds, is 

cos−1(tan(θ l−θ ) tan(θ r))

Since the domain of f (x)=cos−1(x) is x∈[−1,1] , −1< tan(θ l−θ )tan(θ r)<1
However, for some specific values of θl, θ, and θr, tan(θ l−θ ) tan(θ r) becomes greater than 1 or smaller 

than -1. This caused the program to halt the calculations. 

To overcome this problem, I examined the conditions which lead to this problem. As a result, I found out that

tan(θ l−θ ) tan(θ r)>1 resulted when a specific point on Earth received sunlight for the whole day, and

tan(θ l−θ ) tan(θ r)<−1 resulted when that specific point on Earth received no sunlight for the whole 

day. 

For example, a point located on the north pole (θ l=
π
2
) will receive sunlight for the whole day when the 

apparent axial tilt is 23.5°. Figure 17 illustrates this situation.

Fig. 17
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On the other hand, if tan(θ l−θ ) tan(θ r)=1 ,  θsunrise = 0, θsunset = 2π, which is equivalent to the solar panel

receiving sunlight for the whole day. And, if tan(θ l−θ ) tan(θ r)=−1 , θsunrise = π, and θsunset = π, which is 

equivalent to the solar panel receiving no sunlight for the whole day 

From this observation, to satisfy the domain of the inverse cosine function, two conditions were set in the 
program, 

if tan(θ l−θ) tan(θ r)>1 then , tan(θ l−θ ) tan(θ r)=1
if tan(θ l−θ) tan(θ r)<−1 then , tan(θl−θ) tan(θ r)=−1

By introducing these conditions, the program was able to graph the functions for all values of θl, θ, and θr 
while satisfying the domain of each variable.

While this program will calculate the optimum tilt angle for a given latitude, the aim of this investigation is 
to determine the optimum tilt angle for every latitude.

To do so, I created a second program, which will calculate the optimum tilt angle for every integer latitude 
value in degrees, and plot the result on a graph.

Fig. 18

Figure 18 is a graph where the x-axis is the latitude of a specific point on Earth, and the y-axis is the 
optimum tilt angle, both in degrees.  From 0° latitude to around 60° latitude, the optimum tilt angle is close 
to the latitude. This result is similar to the result for Part 1, and makes intuitive sense. However, for higher 
latitudes, the optimum angle decreases, and eventually reaches to 0°. While this result is difficult to judge 
intuitively, as the latitude approaches 90°, there are more days when the whole day is dark or light, which 
may be one of the reasons behind this result. Another interpretation of this result could relate to the method I 
used to overcome the domain problem of, 

cos−1(tan(θ l−θ ) tan(θ r))

A latitude around 66° is when some days in a year will produce a value of tan(θ l−θ ) tan(θ r) small than 

-1 or greater than 1. This latitude of 66° also the point in which the graph(figure 18) begins to slope 
downwards almost in a straight line. Meaning, there could be a connection between these two aspects.
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Conclusion

Results
From Part 1 and Part 2, we have determined the optimum tilt angle for a solar panel, for every latitude, to 
receive the most sunlight throughout the year, which corresponds to producing the maximum amount of 
energy. 

To conclude, in Part 1, when the Earth did not have an axial tilt, the optimum tilt angle was equal to the 
latitude of that specific point on Earth. In Part 2, when the Earth had an axial tilt of 23.5°, the optimum tilt 
angle, dependent on the latitude, can be determined from the graph below.

While this result only show the optimum tilt angles for one hemisphere, for the other hemisphere the 
magnitude of the optimum angles will be equal but opposite in direction.

Evaluation
The method used to determine the optimum tilt angle represented the physical conditions of Earth to a 
reasonable accuracy. In Part 2, I was able to incorporate all three significant pieces of information, the axial 
tilt of Earth, the Earth’s orbit around the Sun, and the sunrise/sunset times, into one equation. Hence, the 
results obtained in Part 2 are reasonably accurate compared to reality. However, the results are not perfect 
due to some assumptions made throughout the investigation. For example, we assume the Earth’s orbit 
around the Sun is circular, whereas in reality, it is elliptical.

This investigation can be further extended in different directions. One extension is to compare the difference 
between the amount of energy produced by a solar panel which is fixed throughout the year, a solar panel 
which is adjusted n times a year, and a solar panel which can be electronically adjusted to always face the 
sun. Another extension is to add a second axis of tilt for the solar panel. By adding another axis of rotation, a 
tilt angle which produces more energy than this investigation may be found.
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Appendix

This is the first javascript program I wrote to graph the amount of energy gained for every solar panel tilt 
angle for a given latitude(used in figure 16).

<html>

    <body>
        
    <style>
    div.position {
    position: relative;
    left: 0px;
    top: 0px;
    }
    </style>
        
    <p>Set Latitude: <input type="search" id="set_latitude" onsearch="set_latitude()"> (hit 
enter)</p>
    <p id="data1"></p>
    <p id="max_theta"></p>
      
    <div class="position" id="chart_div" style="float:top; width: 800px;"></div>
    
    <script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
    
    <script type="text/javascript">

        var energy = [];
        var maximum = [0,0];
        
        var latitude = 34.5;
        
        function calculate(){
        
        energy = [];
        maximum = [0,0];
            
        var l = (latitude/180)*Math.PI; //latitude
        var p = (23.4371/180)*Math.PI; //tilt of earth

        var points = 1000; //number of calculations
        var min = 0;
        var max = (Math.PI)/2; 
        
        var incrament = (Math.abs(max)-Math.abs(min))/points;
        var d = (2*Math.PI)/365;
        
        for(j=0;j<=points;j++)
            {
                var x = min+incrament*j;
    
                var y = 0;
                
                for(i=1;i<=365;i++)
                    {
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                        var inside = Math.tan(l)*Math.tan(p*Math.cos(d*i)); // inside the acos 
function
                        if(inside > 1)
                            {
                                inside = 1; 
                            }
                        if(inside < -1)
                            {
                                inside = -1;   
                            }
                        var a = Math.acos(inside);
                        var b = 2*Math.PI-Math.acos(inside);
                        
                        var calc = Math.cos(l-x)*Math.cos(p*Math.cos(d*i))*(Math.sin(a)-Math.sin(b))
+Math.sin(l-x)*Math.sin(p*Math.cos(d*i))*(b-a);
                            
                        y = y + calc;
                    }
                
                energy.push([x,y]);
            }
        
        
        for(k=0;k<=points;k++)
            {
                if(energy[k][1] > maximum[1])
                    {
                        maximum[1] = energy[k][1];
                        maximum[0] = energy[k][0];
                    }
            }
        
        document.getElementById("max_theta").innerHTML = "Maximum point, theta = "+ maximum[0] + " =
" + (maximum[0]/Math.PI)*180+" degrees"; //  amount of energy = "+maximum[1];
        
            activate();
        }
        
        function set_latitude()
        {
            latitude = document.getElementById("set_latitude").value;
            calculate();
        }
        
        // GRAPHING STUFF FROM HERE:
       
        google.charts.load('current', {packages: ['corechart', 'line']});

        function drawChart() {
            var data = new google.visualization.DataTable();
                data.addColumn('number', 'theta');
                data.addColumn('number', 'f(θ)');

                data.addRows(energy);
            
                var options = {
                               curveType: 'function',
                              };
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            var chart = new google.visualization.LineChart(document.getElementById('chart_div'));
            chart.draw(data,options);    
        }
  

        function activate()
        {
            document.getElementById("data1").innerHTML = "latitude = " + latitude;
            google.charts.setOnLoadCallback(drawChart); //activate graph
        }
        
        calculate();
    </script>
    </body>
</html>

This is the second javascript program I wrote to graph the optimum angle which yields the maximum amount
of energy gained by the solar panel for every latitude(used in figure 18).

<html>

    <body>
        
    <style>
    div.position {
    position: relative;
    left: 0px;
    top: 0px;
    }
    </style>
        
    <p>Set Latitude: <input type="search" id="set_latitude" onsearch="set_latitude()"> (hit 
enter)</p>
    <p id="data1"></p>
    <p id="max_theta"></p>
      
    <div class="position" id="chart_div" style="float:top; width: 800px;"></div>
    
    <script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
    
    <script type="text/javascript">

        var energy = [];
        var maximum = [0,0];
        var final = [];
        var latitude = 34.5;
        
        function calculate(){
        
        energy = [];
        maximum = [0,0];
            
        var l = (latitude/180)*Math.PI; //latitude
        var p = (23.4371/180)*Math.PI; //tilt of earth

        var points = 1000; //number of calculations
        var min = 0;
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        var max = (Math.PI)/2; 
        
        var incrament = (Math.abs(max)-Math.abs(min))/points;
        var d = (2*Math.PI)/365;
        
        for(j=0;j<=points;j++)
            {
                var x = min+incrament*j;
    
                var y = 0;
                
                for(i=1;i<=365;i++)
                    {
                        var inside = Math.tan(l)*Math.tan(p*Math.cos(d*i)); // inside the acos 
function
                        if(inside > 1)
                            {
                                inside = 1; 
                            }
                        if(inside < -1)
                            {
                                inside = -1;   
                            }
                        var a = Math.acos(inside);
                        var b = 2*Math.PI-Math.acos(inside);
                        
                        var calc = Math.cos(l-x)*Math.cos(p*Math.cos(d*i))*(Math.sin(a)-Math.sin(b))
+Math.sin(l-x)*Math.sin(p*Math.cos(d*i))*(b-a);
                            
                        y = y + calc;
                    }
                
                energy.push([x,y]);
            }
        
        
        for(k=0;k<=points;k++)
            {
                if(energy[k][1] > maximum[1])
                    {
                        maximum[1] = energy[k][1];
                        maximum[0] = energy[k][0];
                    }
            }
        }
        
            for(m=0;m<=90;m++)
            {
                latitude = m;
                maximum = [];
                energy = [];
                calculate();
                
                var optimum = (maximum[0]/Math.PI)*180;
                
                final.push([latitude,optimum]);
            }
        activate();
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        // GRAPHING STUFF FROM HERE:
       
        google.charts.load('current', {packages: ['corechart', 'line']});

        function drawChart() {
            var data = new google.visualization.DataTable();
                data.addColumn('number', 'theta');
                data.addColumn('number', 'f(θ)');

                data.addRows(final);
            
                var options = {
                               curveType: 'function',
                              };

            
            var chart = new google.visualization.LineChart(document.getElementById('chart_div'));
            chart.draw(data,options);    
        }
  

        function activate()
        {
            document.getElementById("data1").innerHTML = "latitude = " + latitude;
            google.charts.setOnLoadCallback(drawChart); //activate graph
        }
        
    
    </script>
    </body>
</html>
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